Energy Harvesting Platform

Group 8

SANJAY KHEMLANI	EE
TRAVIS BADALL	ΕE
KIARA RODRIGUEZ	ΕE

Ε

MICHAEL LIN EE

Motivation

- Non-renewable energy sources harm the environment
- Unreliable power grids in under-developed areas
- Interruption of power from natural disasters
- Restricted to specific locations of power supply
- Clean energy is the future

Solution

- Dual-source energy harvesting
 - ➢Solar energy
 - ➢Electromechanical energy
- Reliable no external power source needed
- No interruption from natural events
- Unrestricted, portable power source
- Both sources of clean energy

Goals and Objectives

Charge two batteries simultaneously

External Lithium-Ion battery

► USB device containing a Lithium-Ion battery

Power LEDs from electromechanical energy source

Monitor power output

Specifications

Characteristic	Requirement
Dimensions	≤ 15″ x 15″
Battery Capacity	≥ 2500mAh
Cost	≤ \$400
Output Power	≥ 5W
LEDs Flash	≤ 5 steps

Schematic

Piezoelectric Energy Harvesting Circuit

Schematic – Piezoelectric Circuit

Piezoelectric Transducers

Converts mechanical stress applied to a crystal into electrical energy

 Will be implemented in a platform in high foot-traffic places

 More voltage is produced when wired in series, more current is produced when wired in parallel

Generates dampened sinusoidal AC power

Rectifier/Regulator

LTC3588-1

Solar Energy Circuit

Schematic – Solar Energy

Solar Panel Selection

ACOPower 10W Panel

Solar Panel	Output Power	Dimensions	Efficiency
Nuzumas 3W Panel	3W (12V @ 250mA)	5.7" x 5.7"	13-16%
ACOPower 10W Solar Panel	10W (17V @ 570mA)	11.5" x 11.7"	10.74%
Solarland SLP003-12U	3W (17V @180mA)	7.4" x 7.7"	13%

DC-DC Buck-Boost Converter

LTC 3115-1

Name of Regulator	Input Voltage Range	Output Voltage Range	Output Current	Efficiency	MPPT Capability
LM2576	7-45V	3.3, 5, 12V	3A	75-88%	No
TPS63070	2-16V	2.5V-9V	3.6A	95%	No
LTC3115-1	2.7-40V	2.7-40V	2A	95%	No
LTC3130-1	2.4-25V	1V-25V	850mA	95%	Yes
LT3652	4.95- 32V	<14.4V	2A	75-90%	Yes

Battery Controller Circuit

Schematic – Battery Charge Controller

Battery Charge Management Controller

- Microchip MCP73833
- Output
 - ≻5V
 - ➢ Programmable current up to 1A
- Specifically designed for Lithium-Ion batteries
- Automatic monitoring of end-of-charge and temperature
- LED status indicators for power, charging, and end-of-charge

Lithium-Ion Battery

- Output voltage: 3.7V
- Capacity: 4400 mAh
- Specifically designed to work with MCP73833

Microcontroller Circuit

Schematic – Microcontroller/LCD/Sensors

Power Monitoring System

Main functions:

- Provide real- time update on source power outputs
- Print data to LCD
- Provide battery current draws
- Overall overview of system performance and efficiency

Design Considerations:

- Low power system
- High accuracy analog measurement
- Simple numerical display
- Cost and space efficient
- Easy to troubleshoot

Microcontroller Considerations

Specifications		MSP430G2553	PIC16F18877	ATMEGA328/P
ADC	ADC Bits	its 10		10
	ADC Channels	8	35	8
Cost	Price Per Unit (USD)	\$2.50	\$1.89	\$1.90
Power Consumption	Power Consumption (mW)	0.414 mW	0.0576 mW	0.360 mW
	Lowest Operating Voltage (V)	1.8 V	1.8 V	1.8 V
Clock Frequency	Clock Frequency (MHz)	16 MHz	32 MHz	20 MHz
Memory Capacity	RAM (КВ)	0.5 КВ	4 КВ	2 КВ
	Flash Memory (KB)	16 KB	56 KB	32 KB
GPIO	Pin Count	20	36	32
	Max Voltage Applied to any Pin (V)	3.9 V	3.9 V	6 V

Microchip ATmega328P

- Compatible with already owned Arduino Uno
- Extensive documentation
- Low cost
- Higher max voltage ratings on pin
- Sufficient ADC specifications
- Considerable amount of GPIO Pins
- Good ADC resolution and amount of channels

LCD Character Display

20 character by 4 line display

• 4 – bit to 8 – bit parallel interface:

- Easier to implement
- Faster data transfer
- Space effective
- Transflective polarizer:
 - Allows for indoor and outdoor viewing
- Minimum operating voltage: 4.5 V
- HD44780 compatible controller

INA219 High Side DC Current Sensor

- Detects bus voltage from 0 26 V
- Voltage, Current and Power monitoring
- High accuracy within 0.5%
- I2C interface:
 - I6 programmable slave addresses to use multiple modules
- Built in Configurable ADC
- Register calibrations
- Low cost and space efficient

Software Design Implementation

- Perform analog measurements and power calculations
- Display voltage, current and power outputs from sources
- Read battery ratings to monitor current draw
- Cycle data for easier readability
- Simplify code with built in libraries to reduce code density

Software Flow Chart

Arduino Uno and IDE

- Used as an external programmer
- Provides USB-to-serial converter
- Open source
- Compatible with the ATmega328P
- Arduino Software IDE:
 - C is used to program the microcontroller
 - •Useful IDE included libraries

Platform Top Half

Platform Bottom Half

Demonstration Design

User Interface Module

Material Selection

Casing					
Wood Type	Pros		Uses	Maintenance	
White Cedar	Corrosion resistant Insect resistant Weather resistant		Fences Posts Canoes	Once a year	
Jarrah	Does not decay Resist rotting Resist insects		Flooring Heavy Construction Furniture	2-3 times per year	
Birch	Sold in sheet at craft stores and home supply stores Thin and easy to cut Low Cost		Cabinets Flooring	Rarely	
Transparent Cove	ring				
Material	Pros	Сс	ons		
Glass	Transparent D Ea		Difficult to cut to without proper tools Easy to break		
Polycarbonate Plastic	Transparent Sturdy	Cannot be cut with laser cutter Difficult to cut even with glass cutting tools		cutting tools	
Clear Plastic	Transparent Easy to work with	Melts under too much heat			
Acrylic	Transparent Easy to work with Sturdy when layered	Cc Cc	ould get scratch marks ould break under too much p	ressure	

Prototype

PCB

Work Distribution

Responsibility	Sanjay	Travis	Kiara	Michael
Piezoelectric	Secondary	Primary		
Solar	Secondary	Primary		Secondary
Battery Charging	Primary	Secondary		
Housing/Mechanical			Secondary	Primary
Software	Secondary		Primary	Secondary
PCB Design	Primary	Secondary		

Financing

Item	Cost/Item	Quantity	Subtotal
12 pcs 27mm Piezo Discs	\$19.99	2	\$39.98
ACOPower 10W Solar Panel	\$29.90	1	\$29.90
Casing Materials	\$49.98	1	\$49.98
Lithium Ion Battery Pack 3.7V 4400 mAh	\$19.95	1	\$19.95
ATMega328P-AU	\$2.07	1	\$2.07
INA219BIDR	\$2.38	3	\$7.14
LTC3115	\$7.93	1	\$7.93
LCD Screen	\$13.98	1	\$13.98
LTC3588	\$4.96	1	\$4.96
MCP73833	\$0.85	1	\$0.85
PCB	\$59.99	1	\$59.99
Miscellaneous (Electrical Components)			\$40
Total: \$276.73			

Future Design Considerations

- Implement a design to charge batteries using the piezoelectric transducers
- Realize a circuit that utilizes MPPT
- Create a pathway using multiple platforms
- Develop a compact platform design

Questions?